Matt's Blog

Ion trap papers

Mon May 22 09:05:45 BST 2006

  • [quant-ph/0605170]

    • Title: A microfabricated surface-electrode ion trap in silicon
    • Authors: J. Britton, D. Leibfried, J. Beall, R. B. Blakestad, J. J. Bollinger, J. Chiaverini, R. J. Epstein, J. D. Jost, D. Kielpinski, C. Langer, R. Ozeri, R. Reichle, S. Seidelin, N. Shiga, J. H. Wesenberg, D. J. Wineland
    • Abstract: The prospect of building a quantum information processor underlies many recent advances ion trap fabrication techniques. Potentially, a quantum computer could be constructed from a large array of interconnected ion traps. We report on a micrometer-scale ion trap, fabricated from bulk silicon using micro-electromechanical systems (MEMS) techniques. The trap geometry is relatively simple in that the electrodes lie in a single plane beneath the ions. In such a trap we confine laser-cooled 24Mg+ ions approximately 40 microns above the surface. The fabrication technique and planar electrode geometry together make this approach amenable to scaling up to large trap arrays. In addition we observe that little laser cooling light is scattered by the electrodes.
  • [quant-ph/0605174]

    • Title: High-sensitivity optical monitoring of a micro-mechanical resonator with a quantum-limited optomechanical sensor Authors: O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau
    • Abstract: We experimentally demonstrate the high-sensitivity optical monitoring of a micro-mechanical resonator and its cooling by active control. Coating a low-loss mirror upon the resonator, we have built an optomechanical sensor based on a very high-finesse cavity (30000). We have measured the thermal noise of the resonator with a quantum-limited sensitivity at the 10^-19 m/rootHz level, and cooled the resonator down to 5K by a cold-damping technique. Applications of our setup range from quantum optics experiments to the experimental demonstration of the quantum ground state of a macroscopic mechanical resonator.

[physics]

[permlink]

code (24)

erlang (5)
ideas (19)
lisp (1)
me (11)
notes (4)
ocaml (1)
physics (45)
qo (7)
unix (6)
vim (3)